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a b s t r a c t

Ben-Daya et al. (2010) established a joint economic lot-sizing problem (JELP) for a three-layer supply

chain with one supplier, one manufacturer, and multiple retailers, and then proposed a heuristic

algorithm to obtain the integral values of four discrete variables in the JELP. In this paper, we first

complement some shortcomings in Ben-Daya et al. (2010), and then propose a simpler improved

alternative algorithm to obtain the four integral decision variables. The proposed algorithm provides

not only less CPU time but also less total cost to operate than the algorithm by Ben-Daya et al. (2010).

Furthermore, our proposed algorithm can solve certain problems, which cannot be solved by theirs.

Finally, the solution obtained by the proposed algorithm is indeed a global optimal solution in each of

all instances tested.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

To bear a better resemblance to practice, Ben-Daya et al.
(2010) considered a joint economic lot-sizing problem (JELP) in
a three-layer supply chain with one supplier, one manufacturer,
and multiple retailers as follows: The retailers have a common
basic cycle time T. The manufacturer has the cycle time Tm ¼ K2T

while the supplier has the cycle time Ts ¼ K1Tm ¼ K1ðK2TÞ. The
supplier receives m1 equal shipments of raw materials during its
cycle time Ts, transforms them into semi-finished products, and
delivers m2 equal-sized batches to the manufacturer during the
manufacturer’s cycle time Tm. The manufacturer, in turn, trans-
forms those semi-finished products into finished products and
ships finished products to each retailer at its order quantity every
T units of time. However, the order quantity received by a retailer
might be different from those received by the others. Then they
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established the chain-wide annual total cost (a.k.a., the total cost)
as a function of K1, K2, T, m1, and m2 using the sum of the costs
incurred by the supplier, the manufacturer, and the retailers. They
minimized the chain-wide annual total cost in which four vari-
ables (i.e., K1, K2, m1, and m2) are discrete positive integers, and
the other T is a real number. Notice that their JELP is a nonlinear
integer programming (NLIP) model, and thus is hard to find an
optimal solution using an exact method. Furthermore, the JELP is
complex and computationally intensive even using mathematical
software such as LINGO to solve it. By relaxing all integral
variables as continuous variables, Ben-Daya et al. (2010) derived
a near optimal solution to the problem using an algebraic method
of completing perfect square without classical differential calcu-
lus techniques. In general, most studies use the classical differ-
ential calculus method to obtain the optimal values of the
continuous decision variables. However, an algebraic method of
perfect squares has been used in optimization problems in the
inventory field recently. Examples are Grubbström (1995),
Grubbström and Erdem (1999), Cárdenas-Barrón (2001, 2007,
2008), and Sphicas (2006), just to name a few. For an up-to-date
review on different optimization approaches in inventory lot-
sizing problems, see Cárdenas-Barrón (2011).

Ben-Daya et al. (2010) solved the relaxed JELP (i.e., relaxing all
discrete integral variables in JELP as continuous real-number
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variables) by an algebraic method of completing the square, then
proposed an algorithm to find the integral values for those four
discrete integral variables. However, their proposed integral
procedure seems to be computationally expensive. In fact, their
algorithm requires to compute the integral variables (K1, K2), the
continuous variable (T), and the total cost function for several
times. For simplicity, we set wd e as the smallest integer which is
greater than or equal to w. Then their algorithm requires evaluat-
ing the values of K1, K2, T, and the total cost TC for 4 m1d e m2d e

times, if both m1d e and m2d e are greater than one. If any of
m1d e or m2d e is equal to 1, then the number of evaluations is

less than or equal to 4 m1d e m2d e. For example, if m1d e¼11 and
m2d e¼13, then their algorithm requires to compute each of

K1, K2, T, and the total cost TC for 572 times.
In this paper, we first complement mathematical errors in

Ben-Daya et al. (2010) on the optimal basic cycle time Tn
¼

ffiffiffiffiffiffiffiffiffiffiffi
W=Y

p
and the minimum value for the annual total cost TC¼2

ffiffiffiffiffiffiffiffiffi
WY
p

. If a2

in Ben-Daya et al. (2010) is negative then both K2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2f2=ðc2

P
OrÞ

p
in (29) and Y ¼ ðK2f2þa2Þ=2 are not real

numbers. Consequently, neither optimal basic cycle time
Tn
¼

ffiffiffiffiffiffiffiffiffiffiffi
W=Y

p
nor the annual total cost TC¼2

ffiffiffiffiffiffiffiffiffi
WY
p

is a real number.
This contradicts to the facts that both Tn and TC are real numbers.
Hence, for correctness and completeness, we need to discuss the
case in which a2o 0. For simplicity, we discuss and illustrate this
case using a numerical example as Instance 14 in Section 3 later.
We then rearrange the total cost in (27) in Ben-Daya et al. (2010),
and then propose a simple integral procedure similar to that by
Garcı́a-Laguna et al. (2010) to obtain the integral values for those
four discrete variables m1, m2,K1, and K2. In addition, the
proposed integral procedure discriminates the situations in which
there is only one solution and when there are two solutions for
each discrete variable. Furthermore, we not only obtain the
integral values for all discrete variables in simple-to-apply
closed-form expressions, but also need to compute the value of
the continuous variable (T) only once, instead of 4 m1d e m2d e

times using the algorithm in Ben-Daya et al. (2010).
2. Mathematical model and algorithm

For simplicity, we use the same notation and assumptions as
in Ben-Daya et al. (2010). After some mathematical manipula-
tions, the annual total cost for the entire supply chain in (27) in
Ben-Daya et al. (2010) can be re-written as follows:

TCðm1,m2,K1,K2Þ ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1þ f 2þ f 3þ f 4þe
q� �

ð1Þ

where f 1, f 2, f 3, f 4, and e are given by

f 1 ¼ LOsm1þ
GAs

m1
,

f 2 ¼ ZOmm2þ
XAm

m2
,

f 3 ¼c1ðAmþOmm2ÞK1þ
a1ðAsþOsm1Þ

K1
,

f 4 ¼c2

Xnr

r ¼ 1

Or

 !
K2þ

a2f2

K2
,

and

e¼ LAsþGOsþZAmþXOmþa2

Xnr

r ¼ 1

Or :

To avoid taking a square root of a negative number as shown in
(29) in Ben-Daya et al. (2010), we examine the values of G, L, X, Z,
c1, c2, a1, a2, and f2 as follows:

G¼
h0D2

Ps
40,

L¼ hsDð1�D=PsÞ40,

X ¼
2hsD

2

Ps
40,

Z ¼
hsD

2

Pm
�hsD�

hmD2

Pm
þhmD¼D 1�

D

Pm

� �
ðhm�hsÞ,

c1 ¼
G

m1
þL40,

c2 ¼ K1c1þa1,

a1 ¼
X

m2
þZ,

a2 ¼
2hmD2

Pm
�hmDþ

Xnr

r ¼ 1

hrDr ¼ hmD
2D�Pm

Pm

� �
þ
Xnr

r ¼ 1

hrDr ,

and

f2 ¼
AsþOsm1

K1
þAmþOmm240:

To minimize (1) is equivalent to minimize
P4

i ¼ 1

f i. It is clear that

each f i, i¼1, 2, 3, and 4, has the similar mathematical form as
a1yþa2=y. For the following cost-minimizing problem:

Minimizing a1yþa2=y when both a1 and a2 are positive, and

y is a positive integral decision variable,

Garcı́a-Laguna et al. (2010) proved that the optimal integral
solution is as follows:

y¼ �0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a2

a1

r� �
or

y¼ 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a2

a1

r	 

, ð2Þ

where wd e and wb c are the smallest integer greater than or equal
to w, and the largest integer less than or equal to w, respectively.
Furthermore, it is clear that wd e ¼ wþ1b c if and only if w is not an
integral value. For this case the problem has a unique optimal
solution for y, which is given by anyone of those two mathema-
tical expressions in (2). Otherwise, the problem has two optimal
solutions for y: both yn ¼ y and yn ¼ yþ1. This procedure is easy
to understand and simple to apply.

In order to apply the closed-form solution as shown in (2) to
each discrete variable m1, m2,K1, and K2, we discuss the corre-
sponding coefficients a1 and a2 to each of m1, m2,K1, and K2

separately as follows:
For m1, both Gand L are positive, which imply that both GAs

and LOs are positive too. Thus, we have

m1 ¼ �0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

GAs

LOs

s& ’
or

m1 ¼ 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

GAs

LOs

s$ %
ð3Þ

For m2, if hm is greater than hs, then both Z and ZOm are
positive. Since X is positive, we know that XAm is positive too.
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Hence, we know from (2) that

m2 ¼ �0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

XAm

ZOm

s& ’
or

m2 ¼ 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

XAm

ZOm

s$ %
: ð4Þ

On the other hand, if hm is less than or equal to hs, then Z is
negative or zero, and the function f 2 is minimum at m2 ¼1.
However, the value of the product in the second stage is higher
than that in the first stage. Hence, it is obvious that the unit
holding cost for the manufacturer hm is greater than that for the
supplier hs. Consequently, we may assume without loss of gen-
erality that hm4hs throughout the entire paper. As a result, we
have Z40, a140, and c240. Thus, we have

K1 ¼ �0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a1ðAsþOsm1Þ

c1ðAmþOmm2Þ

s& ’
or

K1 ¼ 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a1ðAsþOsm1Þ

c1ðAmþOmm2Þ

s$ %
: ð5Þ

As we know, both f2 and c2 are positive. If a2 is negative, then
it is obvious that f 4 is minimum at

K2 ¼ 1: ð6aÞ

Otherwise (if a240), then we have

K2 ¼ �0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a2f2

c2ð
Pnr

r ¼ 1 OrÞ

s& ’
or

K2 ¼ 0:5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ

a2f2

c2ð
Pnr

r ¼ 1 OrÞ

s$ %
: ð6bÞ

Notice that the case of a2o0 is not discussed in Ben-Daya
et al. (2010).

From the above results, we propose the following heuristic
algorithm to obtain the integral values of m1, m2, K1, and K2:

An algorithm for finding integral values of m1, m2, K1, and
K2

Step 1: Use Eqs. (3) and (4) to calculate the integral values
of m1 and m2, respectively.
Step 2: Use Eqs. (5) and (6a) or (6b) to calculate the integral
values of K1 and K2, respectively.
Step 3: Compute the total cost (TC) with the following
equation:

TC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

f2

K2
þ
Xnr

r ¼ 1

Or

 !
ðK2c2þa2Þ

vuut ð7Þ
Table 1
Results

Insta

1

2

3

4

5

6

7

8

9

10

11

12
for the 12 instances of Ben-Daya et al. (2010) with the proposed algorithm.

nce Os Om ho hs hm m1 m2 K1 K2 T

600 300 0.08 0.8 2 1 2 1 7 0

100 50 0.08 0.8 2 1 4 1 6 0

200 100 0.08 0.8 2 1 3 1 6 0

300 200 0.08 0.8 2 1 2 1 6 0

1000 500 0.08 0.8 2 1 2 1 8 0

2000 800 0.08 0.8 2 1 2 1 10 0

3000 1000 0.08 0.8 2 1 1 2 6 0

1000 500 0.2 0.8 2 1 2 1 8 0

1000 500 0.4 0.8 4 1 1 2 4 0

1000 500 0.8 0.8 5 1 1 2 4 0

1000 500 0.4 2 4 1 2 1 6 0

1000 500 0.8 2 5 1 2 1 6 0
Therefore, the initial solution to the problem is
(m1, m2, K1, K2, TC).
Step 4: Improving phase. In order to avoid a local optimum,
we use a jumps strategy. In other words, the corresponding
parallel multiple jumps from the current solution are
needed to search for a better solution. The corresponding
parallel multiple jumps for the integral solution of (m1, m2)
are constructed as follows:

ðm1�1,m2�1Þ ðm1,m2�1Þ ðm1þ1,m2�1Þ

ðm1�1,m2Þ ðm1þ1,m2Þ

ðm1�1,m2þ1Þ ðm1,m2þ1Þ ðm1þ1,m2þ1Þ

Repeat Step 2 and Step 3 for all different jumps. Only
consider jumps with mi�1Z1.
Step 5: Select the solution with the minimal total cost. If
the solution can be improved by the corresponding parallel
multiple jumps, then go to Step 4. Otherwise, a good
solution is found. Then, determine T by

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðf2=K2þ

Pnr

r ¼ 1 OrÞ

K2c2þa2

s

and the solution is expressed as (m1,m2,K1,K2,T ,TC).
.0277

.0274

.0279

.0280

.0280

.0278

.0276

.0276

.0259

.0244

.0241

.0230
In the next section, we apply the proposed algorithm to the nume-
rical examples of Ben-Daya et al. (2010) and additional instances.
3. Numerical examples

Ben-Daya et al. (2010) proved the efficiency of their algorithm
with 12 instances. We apply our proposed algorithm for the same
12 instances. The results in Table 1 show that our proposed
algorithm has the same solutions as theirs for 11 instances and
obtains a smaller total cost for the other 1 instance (i.e., Instance
10). It is worth mentioning that the initial solution in 9 out of 12
instances cannot be improved by the corresponding parallel
multiple jumps, and thus the initial solution is the final solution.
Therefore, we can conclude that the initial solution of our
proposed algorithm is a remarkably good heuristic solution to
the problem. In addition, our proposed algorithm requires only
one evaluation to find the total cost.

In order to show that the proposed algorithm obtains a less
total cost to operate than the algorithm by Ben-Daya et al. (2010),
we present 13 additional instances and their results are shown
in Table 2. The data for those 13 instances are available upon
request to the corresponding author.

Also, we calculate: (1) the number of iterations to obtain the
total cost, (2) the CPU time to get the solution, and (3) the total
TC Was the initial
solution improved?

% of improvement with
respect to the initial solution

47,940.35 No 0

41,307.40 Yes 0.25

43,002.69 Yes 0.20

45,186.45 Yes 0.13

51,762.23 No 0

58,099.39 No 0

62,749.57 No 0

52,354.95 No 0

57,731.96 No 0

61,361.47 No 0

70,528.00 No 0

73,664.10 No 0



Table 3
Number of evaluations of total cost, CPU times, and differences in total cost for both algorithms.

Instance Ben-Daya et al. (2010)’s algorithm Proposed algorithm

No. of evaluations
of total cost

CPU time (seconds) Total cost No. of evaluations
of total cost

CPU time (seconds) Total cost Difference

1 10 0.000011 47,940.35 6 0.000009 47,940.35 0

2 18 0.000012 41,307.40 10 0.000007 41,307.40 0

3 14 0.000009 43,002.69 8 0.000006 43,002.69 0

4 10 0.000008 45,186.45 8 0.000006 45,186.45 0

5 6 0.000006 51,762.23 6 0.000005 51,762.23 0

6 6 0.000006 58,099.39 6 0.000005 58,099.39 0

7 8 0.000006 62,749.57 4 0.000004 62,749.57 0

8 6 0.000006 52,354.95 6 0.000005 52,354.95 0

9 6 0.000006 57,731.96 4 0.000004 57,731.96 0

10 6 0.000006 61,491.74 4 0.000004 61,361.47 130.27

11 6 0.000007 70,528.00 6 0.000005 70,528.00 0

12 6 0.000006 73,664.10 6 0.000005 73,664.10 0

13 80 0.000104 559,667.28 12 0.000008 559,655.45 11.83

14 n n n 9 0.000007 24,416.33 n

15 12 0.000028 79,937.52 23 0.000009 79,625.92 311.59

16 480 0.000383 200,897.95 18 0.000009 200,897.95 0

17 200 0.000286 277,951.50 57 0.000015 272,688.52 5262.97

18 124 0.000164 112,180.47 33 0.00001 112,180.47 0

19 12 0.000029 892,861.69 20 0.000008 868,395.07 24,466.62

20 286 0.000395 1,359,146.16 25 0.000011 1,353,416.70 5729.46

21 1008 0.00098 76,226.62 13 0.000008 76,226.62 0

22 120 0.000106 199,354.02 9 0.000006 199354.02 0

23 40 0.000043 1,706,396.20 10 0.000006 1,706,102.10 294.10

24 14 0.000035 77,674.01 15 0.000008 77,674.01 0

25 20 0.000042 106,897.17 14 0.000007 106,334.35 562.81

n Ben-Daya et al. (2010)’s algorithm cannot solve this instance.

Table 2
Results for Instances 13–25.

Instance m1 m2 K1 K2 T TC Was the initial
solution improved?

% of improvement with respect
to the initial solution

13 3 6 3 3 0.0114 559,655.45 Yes 0.002

14 2 2 2 1 0.2540 24,416.33 No 0

15 2 2 1 1 0.0115 79,625.92 Yes 7.6

16 10 10 2 7 0.0087 200,897.95 Yes 0.04

17 5 7 1 8 0.0125 272,688.52 Yes 6.8

18 4 5 1 3 0.0135 112,180.47 Yes 2.8

19 2 1 1 6 0.0062 868,395.07 Yes 26.4

20 13 8 1 15 0.0019 1,353,416.70 Yes 0.30

21 18 13 2 4 0.0151 76,226.62 Yes 0.004

22 6 4 8 2 0.0072 199,354.02 No 0

23 1 11 2 7 0.0043 1,706,102.10 Yes 0.06

24 1 3 1 1 0.0122 77,674.01 Yes 5.1

25 2 2 1 4 0.0115 106,334.35 Yes 1.9
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cost using their algorithm first and then our proposed algo-
rithm. We then compare the difference of the total cost between
theirs and ours in each instance. The results are shown in Table 3.
Table 3 reveals that our proposed algorithm obtains cheaper
total cost than theirs in 8 instances (i.e., Instances 10, 13, 15,
17, 19, 20, 23, and 25). For the other instances, we obtain the
same total cost as theirs except for Instance 14. It is worth
mentioning that Instance 14 cannot be solved using the algo-
rithm in Ben-Daya et al. (2010) because a2 is negative, and thus
both K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2f2=ðc2

P
OrÞ

p
and Y ¼ ðK2f2þa2Þ=2 are not real

numbers. However, we can solve Instance 14 by our proposed
algorithm. In addition, our proposed algorithm uses not only
significantly less number of iterations but also less CPU time than
theirs.

To verify our solutions are indeed optimal, we also solve all
the 25 instances with LINGO optimizer. The results reveal that
the solutions for the 25 instances by LINGO are exactly the same
as the solutions obtained using the proposed algorithm.
Furthermore, LINGO optimizer states that a global optimal solu-
tion is found in each of those 25 instances. This empirical
experimentation shows that the proposed algorithm performs
very well since it obtains the optimal solutions for all 25
instances. Furthermore, the initial solution obtained by the
proposed algorithm is the optimal solution in 11 out of 25
instances.

Finally, it is important to mention that all instances in this
paper were solved using a lap-top computer with the following
technical characteristics: Intel s CoreTM 2 Duo CPU, P8700 @
2.53 GHz, 3.45 GB of RAM.
4. Conclusions

We have complemented some shortcomings in Ben-Daya et al.
(2010). For example, if a2 is negative, then neither the optimal
basic cycle time Tn nor the annual total cost TC in their algorithm
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is a real number. We have proposed a simple-to-apply alternative
algorithm to obtain 4 discrete integral decision variables by an
explicitly closed-form solution. In addition, the proposed algo-
rithm not only needs less CPU time but also less total cost than
the algorithm by Ben-Daya et al. (2010). Furthermore, our
proposed algorithm has solved some problems, which cannot be
solved by the algorithm in Ben-Daya et al. (2010). Finally, it is
worth mentioning that the proposed algorithm is remarkably
good because it has obtained the global optimal solution for all
the 25 instances and its initial solution has been the global
optimal solution in 11 out of 25 instances.
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